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ABSTRACT

The main aim of this paper is to examine the applicability of generalized

inverses to a wide variety of problems in applied probability where a Markov

chain is present either directly or indirectly through aome form of imbedding.

By characterizing all generalized inverses of I-P, where P is the transition

matrix of a finite irreducible discrete time Markov chain, we are able to

obtain general procedures for finding stationary distributions, moments of the

first passage time distributions and asymptotic forms for the moments of the

occupation time random variables. It is shown that all known explicit methods

for examining these problems can be expressed in this generalized inverse

framework. More generally, in the context of a Markov renewal process setting

the aforementioned problems are also examined using generalized inverses of

I-P. As a special case Markov chains in continuous time are considered and we

show that the generalized inverse technique can be applied direct to the

infinitesimal generator of the process, instead of to I-P, where P is the

transition matrix of the discrete time jump Markov chain.
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1. Introduction

In many stochastic modelling situations a Harkov chain in discrete time

* is often present, either directly or indirectly through some form of imbedding.

The most general framework that has been devised for handling such situations

is the concept of a Markov renewal process together with its associated semi-

Markov process. Invariably in an attempt to extract information concerning

the behavior of such processes (either for the Markov chain in discrete time

or for the more general continuous time process) we are interested in obtain-

ing: a) stationary distributions, b) expressions for the moments of the first

passage time distributions and c) asymptotic forms for the expected number of

visits to each state (occupation time random variables in the Markov chain

setting or, more generally, the Markov renewal counting random variables).

In section 2 we discuss these three general problem areas and show that

they are all intimately related to the form and structure of P, the transition

matrix of the imbedded discrete time Markov chain.

Quite often, once some preliminary analysis has been carried out, we find

that the properties of interest can be obtained by solving a system of linear

equations involving P, or more particularly I-P where I is the identity matrix.

One condition generalized inverses (commonly called g-inverses) are shown, in

section 3, to be extremely useful in handling such types of equations.

Although g-inverses are not necessarily unique we are able to characterize all

g-inverses of I-P when P is finite and irreducible.

In the remaining three sections of the paper the problems a), b) and c)

alluded to earlier are investigated for Markov chains in discrete time, Markov

renewal processes (or the associated semi-Markov process) and Markov chains in

continuous time. In this latter process, a special Markov renewal process, its

........ .......



stochastic behavior is governed by an infinitesimal generator Q and we show

that the generalized inverse technique can be applied direct to Q instead of

to I-P where P is the transition matrix of the imbedded discrete time "jump"

chain.

No numerical or computational studies have been carried out using the

methods presented but there are some compelling reasons why the procedures

given in the paper should prove to be useful. Firstly, many computer sub-

routines for producing generalized inverses are now available and since many

of the techniques developed herein require no special form for the generalized

inverse any such package can be used without any modification. Secondly, if

some additional information is known concerning the structure of the generalized

inverse in the subroutine the solution of the problem at hand may be considerably

simplified. Furthermore, any known explicit methods for solving these problems,

that have already appeared in the literature, can be expressed in the framework

presented in this paper. It is the universality of the results presented herein

that should prove to be valuable.

2. Models and Problems of Interest

2.1. Markov chains in discrete time

Let {Xn} , (n > 0), be a discrete time, finite, homogeneous, Harkov chain

with state space S taken to be {1,2,'",m). Let P [p1j] be the transition

matrix of the chain which, for the rest of the paper, will be assumed to be

irreducible. We make no assumption whether the Markov chain is aperiodic or

periodic and the analysis presented covers both of these cases.

It is well known (Feller [ 6 ], Kemeny and Snell [ 9 1) that for such chains

a stationary (or invariant) probability distribution {1r } (i 1,2,'",m) exists,

2



is unique, and satisfies the equations

m m
(2.1) j !lwiPij and Elwi 1.

i~l i=l

If w - (low 2 ,',) and e' - (ll,',l), equation (2.1) can be

expressed as

(2.2) w'(I - P) - 0' subject to w'e - 1.

Thus the stationary probability vector w' can be determined by solving

a constrained system of linear equations involving I - P, a singular matrix.

We examine general procedures for solving such a system in section 3.2 and

apply these procedures to the problem at hand in section 4.1.

Let Tij be the number of trials for a first passage from state i to

state j (first return if i = J), i.e.,

T inmin{n:X - Jx }.

Under the assumption of irreducibility for finite chains the Tij are proper

random variables, the moments m (k) E Tk are well defined and finite for
ij ij

all i,j E S (cf., Theorem 13.4.1 of Neuts [14]). Furthermore, it can be

shown (Kemeny and Snell [9 ]) that the mean first passage time from state
_(1)

i to state J, m mM satisfies the equation
ij ij

(2.3) muj - 1 + E pik '' (i,j C S).

koj

If we use the notation M - [mil] , Md - [61j mj] and E - [1) (i.e., all

the elements of E are unity), equations (2.3) can be expressed as

3



(2.4) (I - P)M - E- PMd.

Once again we have a system of linear equations involving the matrix

I - P. As we shall see, (section 3.2), when we solve such equations involving

singular matrices there is some arbitrariness in the solution. However, the

right hand side of equation (2.4) involves Md which can be determined in terms

of w' and this turns out to be sufficient to enable us to obtain an explicit

solution for M. In fact is is well known (Feller [ 6 ], Kemeny and Snell [9 ])

that if w' - (wrir 2,..',) is the stationary probability vector then

mjj i= 1lv and thus if R = e',

(2.5) Md = (d-l

General solutions to equation (2.4) are discussed in section 5.1.

It is also possible to derive expressions for the matrices of higher

moments H(k) () mJ. Since a Markov chain is a special Harkov renewal

process such problems can be considered in the more general Harkov renewal

setting.

Let 14 be the number of k (0_< k < n) and N (n) be the number of kij ij

(1 < k < n) such that Xk - j given X0 - i. Thus M = N + 6J and
0i i i

these random variables record the number of visits the Markov chain makes to

state j by trial n with M(n) recording the initial occurrence at the zeroth
ij

time if I - J. There is no standard terminology for distinguishing between

these random variables. We shall call M(n) the occupancy time random
ij

variable and N (n) the modified occupancy time random variable.ij
If p(k) is the k step transition probability from state i to state j

ij
i (0) _p (1) ) and if P thenp(k) Pk (k > 1),

tij " iJ i i i PiJ ]te

4



(p(O) - I). With this terminology it is easily seen that

(2.6) EMj - (k)i and ENn = (k)() n (k) (n) n(k
(2.6 E jZ j a d EN il r pij '

ij k-O0 k-iii

and that

7 [EM n )  k (n) n

(2.7) [EM ij ]  E P and [EN ij E P
k-O k=l

We shall show in section 6.1 that we can utilize generalized inverses

of I - P to obtain a variety of expressions for [E. (n)I and E N I- M~ij ] n Eij ,

2.2. Markov renewal processes and semi-Markov processes

Let {(Xn,T) (n > 0) be a Markov renewal process with state space

S - {l,2,-",m} and semi-Markov kernel Q(t) - [Q ij(t)] where

Qij(t) = P(xn+ 1 = J, T n+ - T n < tIX n - i}, ij E S.

The terminology used above is that which was introduced by inlar 1 4 1.

For a descriptive definition see Hunter [ 8]. One way of visualizing a Markov

renewal process is to interpret X as the state the stochastic process is in
n

following the nth transition and Tn is the time that the nth transition

occurs, (0 - TO < T1 < T2 < .).

One pertinent observation is that the transitions are governed by a

discrete time Markov chain {Xn} with transition matrix P - p -
] [QiJ(+m) ].

Given that the (n+l)th transition takes the process from state i to state J,

the time between transitions is governed by a distribution function

F j(t) a PIT+ - T tIX - i, X+ 1 - J]

5



Thus, provided Pij > 0, Qij(t) - Pij Fij(t)" (If pij = 0 then Qij(t) - 0

for all t and Fij(t) may be arbitrarily defined, say Fij(t) = I for t > 0.)

Let Hi(t) - P[T n+ - Tn < ixn - i] be the distribution function of

the time until the next transition given that the process has just entered

state i, then

m m
H i~ M j= EP iJ Fij (t) = J EflQ ij t).

J=J

We shall use the following notation:

(k) . k (k) -0 ki (k) cc k t
Uij f f0t dQij (t), dF( t) , Pk) ftkdH(t).

Thus

(k) (k) (k) m (k)Pi Pji and V f E- Uii iijil ij

For convenience we write iJ iJ niJ =ij and p i i"

As in section 2.1 we shall assume that the imbedded Markov chain {Xn }

is irreducible and thus has a stationary probability vector w'.

Let Tj be the time for a first passage from state i to state j to take

place in the Markov renewal process and let Gij (t) be the distribution function

of Tij. If m(k ij  = odGij (t) with mj1 ) = mij then it can. be shown (Lemma 2.1,

Hunter [ 8]) that for r > 1

(r) rW (r-s) (a) (r)(2.8) m)ij Z + r ik N J+i
S k~jikj SM1l koj m1

so that if M(r) [ (r)I and P(r) . (r)
ij ]nd

6 l



(2.9) (1- P)M(r) r) M(s) + P (r) E  PM(r)= ~ r)p(r-s)[M(S) -Hd +P - ~

(1)
In particular when r = 1 if we take M - M we have

(2.10) (I - P)M-- P(E - PMd.

Observe that when the Markov renewal process {(Xn, T U) degenerates to a

Markov chain {Xn I by taking Tn = n for all n, Vij = piJ and ji = 1. For

such a case equation (2.10) becomes equation (2.4). Consequently any

general technique to solve equation (2.4) can be applied to the more general

set of equation (2.10). Such a procedure is examined in section 5.2.

For each fixed j e S the instants Tn for which X = j form a possibly

delayed renewal process. In particular, if we let Nt = sup{n>01T n<t and

N (t) = number of n (0 < n < Nt) such that X = j then the vector

{N1(t),N 2 (t),",N m(t)} forms the Markov renewal counting process. If we

are given that X = i then we can define Nij(t) = N (t). Consequently the

random variables Nij (t) are analogous to the occupation time random variables

in the Markov chain setting.

Let Mij(t) = E[Nij(t)] = E[N(t) IX0 = ii and M(t) = [Mij(t)]. This

matrix function is also called the Markov renewal kernel and can be

expressed in terms of semi-Markov kernel, (ginlar (4 1). In particular

(n)(n

where (t) " P{X - j, Tn< tIX0 = i}, (n > 1),

kESO kjt (n - ) k(t-y)dQik(y) (n > 2),

7



with QM(t)- Qj(t).

In Hunter [8 ] it was shown that

m(2) m

(2.11) Mij(t) = t + 2m _ _ + o(l),

iji iji iji

or in terms of matrices

- 1 1 2. (2) _M(Md)-I (1E
(2.12) M(t) = tE(Md) - + i E[(M d)-I Md  d + o(l)E.

By utiliziig general expressions for M and M(2) which we deduce in section 5.2,

we derive a collection of simple expressions for equation (2.12) in section 6.2.

Associated with a Markov renewal process {(Xn,Tn)} is its minimal semi-

Markov process {Y } (t > 0) defined as

Y X for T < t < Tn+

(where, since {Xn } is assumed to be an irreducible Markov chain, sup T n + ).n n

Thus Yt may be regarded as the state that the Markov renewal process is in at

time t.

If {X n is irreducible and (X n,Tn ) is aperiodic, Vi < - for all i c S,

then it can be shown (ginlar [4 ]) if v' - (vl,v 2,- ,v ) where

j lim P{Yt j 1X0  i},

then

(2.13) -

8



where w' is the stationary probability vector of the imbedded Harkov chain,

A - diag(pl,1 2,...,i m) and p' P ). Thus the limiting distribution

of the semi-Markov process can be found easily once r' is known.

2.3. Markov chains in continuous time

When the semi-Markov kernel Q(t) has the form

(2.14) Qij(t) = P ij [I - e- it],s iJ 2, 1,2,'"*,m, t > 0;

with PIi - 0 then the semi-Markov process Yt associated with this kernel is

a Markov process, or more specifically a Markov chain in continuous time.

We shall also assume that 0 < Xi < - so that the process is stable and

regular.

In the terminology of section 2.2 we have that

e-lit,
Fij(t) = 1 - e i y J, t > 0,

implying that for ij c S { l,2,'",m),

p= i!- I +J); PI
"ij - 'A

Although the properties of the process are determined by the semi-Markov

kernel it is traditional to use the infinitesimal generator of the process

when examining such processes. inlar [4 ] shows that knowledge of Q(t) as

given by equations (2.14) is equivalent to knowledge of the infinitesimal

generator Q = [qij. In particular



qiij
iPij , J .

Conversely Xi =-qii

0 ,i=J,
and p0i

-q j / q l i i J .

Observe that qij > 0 for i 0 J, qi < 0 and that Eq -0. From these
iij ii

relationships it is easy to see that

(2.15) 1 - P = (Qd)-1Q and A -(Qd) -1 .

An interesting by-product of these results is that instead of using

equation (2.13) to find v' via r', the stationary probability vector of the

irreducible imbedded Markov chain with transition matrix P, we can determine

V' from the infinitesimal generator of the process by solving the equations

(2.16) v'Q - 0' subject to v'e 1.

Because of the singularity of Q, equation (2.15) lends itself to treatment

using generalized inverses of Q. This approach is considered in section 4.3.

Expressions for the mean first passage times and the moments of the renewal

counting random variables can be obtained from the relevant Harkov renewal

process results with an appropriate identification of parameters. Further

discussion is presented in section 5.3 and 6.3.

10



3. Generalized Inverses

3.1. Definitions

In section 2 we presented a variety of applied probability situations

where we have a set of linear equations involving a singular matrix that we

wish to solve. The simplest class of "equation solving generalized inverses"

are the one condition generalized inverses which we shall call g-inverses.

Definition 3.1.: A g-inverse of a matrix A is any matrix A7 such that

(3.1) AA-A - A. O

Generalized inverses are in general not unique (unless A is non-singular

in which case A - A71 ) . By imposing additional conditions we can in fact

however end up with a unique generalized inverse.

+
Definition 3.2.: The Moore-Penrose generalized inverse A of a matrix A is

the (unique) matrix satisfying the conditions

++ +
(i) AA+A A (ii) A+AA +  A

(iii) (AA+)' - AA (iv) (A +A)' A+ A. O

We have made no statement concerning the order of the matrices but if A

is a rectangular m x n matrix then any g-inverse A7 must be of order n x m

so that the matrix multiplications present in Definitions 3.1 and 3.2 are

conformable. In the application areas we are concerned with, only square

matrices of order m x m will arise and for such matrices there is another

class of g-inverses of interest.

Definition 3.3.: If A is a square matrix then the group inverse for A, if

it exists, is defined to be the matrix A* which satisfies the conditions

11
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(i) AA*A = A (ii) A*AA* - A* (iii) AA* - A*A.

2If rank (A) rank (A2) then a group inverse exists and it is unique. 0

There is an extensive literature on generalized inverses and any reader

interested in getting some impression as to the richness of the theory that

has been developed should consult one of many books now available on this

subject. For example Ben-Israel and Greville [ l.], Boullion and Odell [2 1

and Campbell and Meyer [ 3] (this latter reference contains an excellent

chapter on applications of the group inverse to finite Markov chains).

3.2. Solving systems of linear equations

The following theorem and its corollaries provide us with tools for

attacking systems of linear equations. In all cases we assume that matrix

multiplications are well defined.

Theorem 3.1.: A necessary and sufficient condition for the equation

A X B - C to have a solution is that AA CBB = C, (the condition for

consistency), where A7 is any g-inverse of A and B7 is any g-inverse of B.

If this consistency condition is satisfied the general solution is given by

one of the two equivalent forms; either (a):

(3.2) x - A-CB- + W - A-AWBB-,

where W is an arbitrary matrix, or (b):

(3.3) x - A-CB- + (I - A-A)U + V(I - BB-),

where U and V are arbitrary matrices.

Proof: The necessity and sufficiency of the consistency conditions together

12



with equation (3.2) can be found in Rao [16] (or Theorem 6.3.2 of Campbell

and Meyer [3]). The equivalence of equations (3.2) and (3.3) follows by

taking W = (I - A-A)U + V(I - BB-), or conversely taking

U = V - l(W + A-AW + WBB-). O

If I is an identity matrix I = I and from Theorem 3.1 we deduce

immediately the following two corollaries.

Corollary 3.1.1.: A necessary and sufficient condition for the equation

AX - C to be consistent is that AA-C - C, where A is any g-inverse of A,

in which case the general solution is given by

(3.4) x - AC + (I -AA)U ,

where U is an arbitrary matrix. 0

Corollary 3.1.2.: A necessary and sufficient condition for the equation

XB - C to be consistent is that CB-B - C, where B- is any g-inverse of A,

in which case the general solution is given by

(3.5) X - CC + V(I - BB)

where V is an arbitrary matrix. 0

Since g-inverses are not unique let us write A (1} for the set of one

condition g-inverses A7 of A satisfying equation (3.1). Thus if K E A

then A X A - A. Suppose A is a particular g-inverse of A, then since

AAAAA - A from Theorem 3.1 we can deduce that the equation A X A - A is

consistent. The general solution of this equation then provides us with

Al given A7. In fact we have a variety of characterizations of .(1}

given a particular g-inverse of A.

13



Theorem 3.2.: If A7 is any g-inverse of A then all g-inverses of A can be

characterized as members of the following equivalent sets:

(3.6) A{l) - (A-AA- + W - AAWAA 1 W arbitrary),

(3.7) A{l) - {A-AA- + (I - A-A)U + V(I - AA-)IU,. V arbitrary),

(3.8) AM = {A7 + H - A-AHAA-1H arbitrary),

(3.9) A{M = {A- + (I - AA)F + G(I - AA-)IF,G arbitrary).

Proof: The characterizations (3.6) and (3.7) follow from equations (3.2)

and (3.3) with C = B = A and the equivalence already established in Theorem

3.1. Furthermore by taking W = H + A (3.6) and (3.8) are equivalent as are
F +1 ad

(3.7) and (3.9) with U - F +!A7 and V - G + A.

3.3. Generalized inverses of I - P

The following theorem provides us with a key result, hitherto unreported

in the literature.

Theorem 3.3.: Let P be the transition matrix of a finite irreducible discrete

time Harkov chain. Let u' be any vector such that ue 0 0 and let t be any

non-zero vector. Then

(a) I -P + tu' is non-singular.

(b) (I - P + tu']-i is a g-inverse of I - P.

Proof: (a) For any matrix X,

det(X + tu') - det(X) + u'(adj X)t.

14.



By taking X -I P , a singular matrix we have

(3.10) det(I - P + tu' -u'[adj(I - P)]t.

Furthermore [adj(I -P)](I -P) -(I - ) ladi (I P )] -det(I -P)I -0,

so that if A =adj(I - P) then

(3.11) AP PA=A.

If P is irreducible then any matrix A satisfying equation (3.11) is a

multiple of RI = ew', where wt' is the stationary probability vector of the

Markov chain. Thus adj(I - P) - keir'.

Now if A is an m x m matrix with eigenvalties U1,'12'. -- I and if i
m

is a zero eigenvalue then tr(adj A) - t J! 1J Since P is irreducible

its eigenvalues XX 2,"* ,A mare such that X I is the only eigenvalue

equal to 1. Consequently tr(adj (I - P)) - 1t (1 - X 0. But

tr(adj (I - P)) - k tr(ear') - k and thus from equation (3.10)

det(I - P + tu') - k(u'e)(w't) 0 0,

establishing the required non-singularity.

(b) First observe that

(I -P +tu')(I-P +tul) WI,

so that

(3.12) .(1 - P)(I -P + tu') 1  tu'(I -P + tl

Now note, using equation (2.2), that



-I( P + tu') -W'(I - P) + WIrtu' WOWr'~u,

and thus

(3.13) MiMr' I- t)-l

Substitution of the result of equation (3.13) into equation (3.12) gives

(3.14) (1I-P)MI- P+tu')'-I--

and hence that

(I - P)(I - P + tu') (I - P) - I -P - =-(I - P) -I - P

-1~

showing that (I - P + tu')- is a g-inverse of I- P by virtue of Definition 3.1.0

Paige, Styan and Wachter (151 developed a similar result in which they

showed that I - P + eu' is non-singular provided uWe 0 and that its inverse

is a g-inverse of I - P. Of course, this is a special case of Theorem 3.3

with t - e(# 0). However it is the generality of Theorem 3.3 that will prove

useful in the applications to follow.

Corollary 3.3.1.: Under the conditions of the theorem, any g-inverse of I -P

can be expressed by the following equivalent forms:

t'1  e'H Ht~r' eu'Htir'

(3.15) G - [I - P + -it (ue(rt

where H is an arbitrary matrix.

eu'F Gtir'
(3.16 G (I P~tu' 1  +-

G 1 P -ul u'e w't
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where F and G are arbitrary matrices.

Proof: Using an approach similar to that used above

(I - P + tu')-l (I - P) - I - (I - P + tu') tu ,

and

(I - P + tu')e (I - P)e + tu'e = (u'e)t,

with (I - P)e = 0 due to the stochastic nature of P, implying that

(3.17) u e (I - P + tu')-1t,

and consequently that

eu'
(3.18) (I- P + tu') 1 (I- P) ue

If we use the characterizations (3.8) and (3.9) then equations

(3.15) and (3.16) follow by taking A - I - P, A- - (I - P + tu')- 1 and

using equations (3.14) and (3.18). 0

Corollary 3.3.2.: Under the conditions of the theorem any g-inverse of

I - P has the characterization

(3.19) G = [I - P + tu'] + ef' + gr',

for arbitrary f and 1.

Proof: Equations (3.16) and (3.19) are equivalent by taking F - ef' and

G= giw' or conversely by taking

17



u'F Gt

u -- and g -

Similarly equations (3.15) and (3.19) are equivalent by taking

H = ef' + giw' or conversely by taking, for example,

91H eu' Rt
f , and =[I- --- e]---. 0

ue ue wIt

A variety of generalized inverses of I - P have appeared in the

literature when their derivation was often obtained by 'ad hoc' techniques.

In the following corollary we exhibit their representation in terms of the

characterization given by (3.19).

Corollary 3.3.3.: Let P be the transition matrix of a finite irreducible

Harkov chain with stationary probability vector %' and 11 ev'. The

following are all generalized inverses of I - P.

(a) G1 - P + ]- 1 .

(b) G2 - [I - P + eu']-1 provided u'e 0 0.

(c) G3 - [I- P + A-IT.

(d) G4  [I -P + awe'] an where (m'w) -/2

(e) G5 - [I - P- + B adj(I - P) for any (I - P)- and 0 # 0.

(f) If P - then I - P has a g-inverse of the form

S PU
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(I- P)- [] [I P + tu' -1 + ef',
O' 0

where u' -.(O',1), t= (01-), ft -($'(I ll1).

Proof: (a) G follows by taking t - e, u i, f 0, g -0. G was first

recognized as a g-inverse of I - P by Hunter [8] and is known as the

"fundamental matrix' of the irreducible transition matrix P (Kemeny and

Snell [ 9 1).

(b) As observed earlier, G2 was identified as a g-inverse of I - P

by Paige, Styan and Wachter (15].

(c) G3 follows by taking t - e, u - w, f = -w, g = 0, and is, in fact,

the group inverse (I - P)# (see Definition 3.3) as first shown by Meyer [11];

(see also Campbell and Meyer [ 3]).

(d) G4 follows by taking t - w, u - ae, f - -ar, g - 0, and was

shown by Paige, Styan and Wachter [15] to be the Moore-Penrose generalized

inverse of I - P, (I - P) +, (see Definition 3.2).

(e) From the proof of the non-singularity of I - P + tu' we saw

that adJ(I - P) - ker' with k 0 0.

I -[A 1 1  A 1 2 ]
Mf I- P + tu'=

[I0P1  2pA A'
- LA21 22

where t' - (O',l) 0 0' and u'e - (O',l)s -l0. Thus I-P+tu' is non-

singular and from the results concerning inverses of partitioned matrices,
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[I-p + tuf1
B 21 B 22.

-1 -1

where B22  A2- IAII 1A12) - ff1,

B21= -B2 2A2 1Al1 1  -W'(I - P -1 ,

B 12 -A 1-1A 1 8 22P 11 )1CL

B1 -- A -AB - (IP- P)- 1 ,

1 13. 12 2 1 111 1
-1 -1i

BI - Al - Al A2B21 = - PI ) - 1 (I-PI - 1 ( I )

In determining these expressions we have made use of the fact that

(I - P)e - 0 so that 1 -prom - 'e and (I - Pll)e a implying that 1-pm

=0' (I - P1 1 )-1 a. The required form now follows. This result, without the

particular representation of the form (3.19), was reported by Rohde (17]

as being provided by a personal communication from J. Hearon. (An expression

for the group inverse of I - P with P so partitioned has been given by

Campbell and Meyer [ 3]).

3.4. Generalized inverses of Q

If Q - [qijj is the infinitesimal generator of the continuous time Markov

chain and P is the transition matrix of the imbedded discrete time Markov

chain then from equations (2.15) it is easy to see that

(3.20) Q - (I - P).

If P is irreducible we have that I - P has rank m - 1 and that P has a

simple unit eigenvalue. The equivalence of these two statements follows
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since P is stochastic (pg. 133, Marcus and Minc (10]). However, even though

Q is not stochastic we can establish analogous results.

Lemma 3.4.: If P is irreducible then for Q given by (3.20)

a) Q has rank m - 1,

b) Q has a simple zero eigenvalue.

Proof: Since I - P has rank m - 1 and Q is derived from I - P by a non-

singular transformation, Q also has rank m - 1.

Since det(Q) = 0 it is easy to see that Q has at least one zero eigenvalue

but to establish the simplicity of this eigenvalue requires more care. We make

use of the result that zero is a simple eigenvalue of Q if and only if det(Q) = 0

and tr(adj Q) 0 0 (cf., p. 218, Mirsky [13]).

Now from equation (3.20),

adj Q = adj(I - P) adj(-A-),

=ken'~(-l) 7liff Xi ) A

where, from the proof of Theorem 3.3 k # 0 and from the specifications in

m 11 1
section 2.3, w X # 0 with A - diag( 1 1 ,-1. Thus

i1l 12 m

(3.21) adj Q cen'A with c # 0,

m 1
implying tr(adj Q) = c'A e c E - # 0.

Armed with these observations we can now generalize Theorem 3.3.

Theorem 3.5.: Let Q be the infinitesimal generator of a continuous time Markov

chain with irreducible imbedded discrete time jump chain. Let u' be any vector

21
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such that u'e 0 0 and let t be any non-zero vector. Then

(a) Q + tu' is non-singular.
-1

(b) (Q + tu')- I is a g-inverse of Q.

Proof: (a) Following the proof of Theorem 3.3 (a) we have that

det (Q + tu') = u' adj(Q) t,

M c(u'e)(E'At) 0 0, using (3.21).

(b) With minor changes we can use the arguments given in the
70A

proof of Theorem 3.3 (b). If I - P is replaced by Q and r' by v' ( -),

so that v'Q 0', then the same procedure gives

Q(Q + tu') - I Q = Q,

and hence the required conclusion. 0

Without going into all the details we can work through the relevant

corollaries of Theorem 3.3 to conclude that, under the conditions of Theorem

3.5, any g-inverse of Q has the characterization

(3.22) H - (Q + tu')-1 + ef' + gv'.

The results of Theorem 3.5 and expression (3.22) are new. To my knowledge

the theory generalized inverses has not previously been applied to infinitesimal

generators of Markov processes.

4. Stationary Distributions

4.1. Markov chains in discrete time

Using the theory of generalized inverses we can now obtain a general
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expression for the stationary probability vector w'.

Theorem 4.1.: Let P be the transition matrix of a finite irreducible Markov

chain. If (I - P)- is any g-inverse of I - P and if A E I - (I - P)(I - P)-

then

v'A
(4.1) W v'e

where v' is any vector such that v'Ae @ 0.

Proof. Observe that equation (2.2), w'(I - P) = 0', has the form XE * C where

X = i', B = I - P, C = 0'. Using Corollary 3.1.2 we see that the consistency

conditions are obviously satisfied and that equation (3.5) implies that the

general solution is given by

' = z'(I- (I - P)(I - P)) z'A,

where z' must be chosen so that if'e 1 z'Ae.

Let v' be any vector such that v'Ae # 0 and take z' v'/v'Ae (# 0').

Then, for such a choice, n' = v'A/v'Ae and !'e - 1. o

There are a variety of ways that we can use Theorem 4.1. Firstly,

suppose we are given a computer subroutine for generating g-inverses. Can

we use this package? In order that we can use equation (4.1) we have to be

sure that we can in fact find a suitable v'. The following corollary

establishes the required verification providing us with an affirmative

answer to the query.

Corollary 4.1.1.: Under the conditions of the theorem, if (I - P) is any

g-inverse of I - P then Ae # 0 and thus we can always find a v' such that

v'Ae 0 0.
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Proof. Since any g-inverse of I - P can be characterized by the form given

by equation (3.19) we see that

A - I - (I - P)[(I - P + tu')-1 + ef' +

t
[--- (I - P)g]1', using equation (3.14).
WIt

t

Thus, since 'e = 1, Ae I - (I - P)g. Now suppose that Ae = 0. This then

implies that

t

- (I -P)g

i't

so that 1 = 7 ='(I - P)g = 0, a contradiction, and thus Ae # 0.

Another way to use Theorem 4.1 is to take a particular form of g-inverse

of I - P that does not directly involve knowledge of w and use such a g-inverse

in the procedure described by equation (4.1).

Corollary 4.1.2.: If we take

(I - P)- (I - P + tu')-1 + ef',

where t #0 , u' such that u'e 0, and f are arbitrarily chosen then

u'[I - P + tu']
- I

(4.2) W' - ~  t-,]l .
S u'[I - P +tu e

Proof: With (I - P)- so chosen

A - I - (I - P){(I - P + tu')-1 + ef'),

- tu'(I - P + tu')- i, using equation (3.12).
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Substitution in equation (4.1) yields

v'tu'(I - P + tu)
- I

ITS

v'tu'(I - P + tu')-l e

Equation (4.2) now follows by dividing the numerator and denominator by v't

(since we can obviously find a v' so that v't # 0). Note also that by equation

(3.13) the denominator u'(I - P + tu )- e is non-zero. 0

Equation (4.2) is a new result and gives a very general procedure for

finding w'. Further studies need to be carried out to determine efficient

choices of t and u to simplify the computation.

The generality of the procedure outlined in Theorem 4.1 is such that all

known explicit methods for finding stationary distributions of finite irreducible

Markov chains can be expressed in this framework. We show how some of the

more well known techniques can be deduced from this theorem.

Corollary 4.1.3.: Let P be the transition matrix of a finite M-state

irreducible Markov chain.

(a) For any u such that 'e # 0,

(4.3) 7r u'[I - P + eu']-I .

(b) Let (I - P) be a generalized inverse of I - P such that

e'[I - (I - P)(I - P)]e #0, then

~e'[ - UI - PM( - P)-]

(4.4) Irv=

e'[I - (I - P)(I - P)-]e
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(c) Let D be the determinant of the matrix formed by removing the jth row

and Jth column from I - P, then

e'[adj(I - P)]d

~ tr(adJ(I - P))

(4.5) m1

E Dj

(d) The matrix (I - P)j = I - P + t where e is the Jth elementary vector

and tj - e - (I - P)ej, which can be formed from I - P by replacing its Jth

column by e is non-singular; its inverse is a g-inverse of I - P and

(4.6) W= ej'[(I - P) 1 , (j f l,2,',m).

(e) If P []then

((I - P1), 1)

(4.7) ' (' (I - P) 1  1)e

Proof:

(a) In equation (4.2) take t - e and (4.3) follows by observing that

u'(I - P + eu') -e = 1, which can be established from equation (3.13) by

postmultiplying by t = e. This particular result, with a direct proof, was

given earlier by Paige, Styan and Wachter [151.

26
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(b This follows immediately from equation (4.1) with v -e. [Decell and Odell

[5]1 derived this result under the additional assumption that (I - P)(I - P)-

should be symmetric. This rather severe restriction establishes the non-zero

nature of k - e'Ae. Since, if a Ae then ai' - e'A and it follows upon

simplification that cs'a - k. Now a'a > 0 iff ai 0 0, so that k - 0 only if

a-0 but this would imply that e - (I - P)(I - P) e and hence that

ie w ir( - M)I - P)-e - 0, a contradiction.]

Wc In Theorem 4.1 take v' -e 1 (adj(I - P)]. Then

v'A -e I'[adj(I - P)][I - (I - P)(I -]

!l e1 [adj (I - P)] since [adj (I -P) I(I - P) - 0,

so that

v'A e '[adj(I - P)]

- vAe el'[adj(I -M

Now from the proof of Theorem 3. 3 we have that adj (I -P) -kit [ kwT1 where

k - tr(adj(I - P)) #0. Also adj(I - P) - (cii] where aci~ is the cofactor of

the (i,j)th element of I- P. Thus aci kir i - DV Consequently,

!j'[dj - P)] -(all,c 2 1 ... ' 1 ) - (ci 1 1 1 c2 2 1 ,cim)1

S '[adj(I - P~l d -D,2-D)

and
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ej'(adj(I -P)]e - -!cj tr(adj(I - P)),

m
M = ~D (k E w - k 0),

and equation (4.5) follows.

This representation of %I~ in terms of D v as originally due to Mihoc;

(cf. Frechet (71, Hunter [8]).

Md The elements of the jth column of a matrix can be reduced to zero by

port multiplication by I - eje ' and thus

(I - P)~ (I- e ') + e

Observe that t 0 0 and that e 'e - I which, form Theorem 3.3 establishes

the non-singularity and g-inverse properties of (I - P) F Expression (4.6)

follows from equation (4.2) upon noting that equation (3.13) implies

'[I- + *Pe -!j +e)ej' e = K'e/ff'(Pej-
!j !IP+P +e+l

This particular procedure was also suggested by Paige, Styan and Wachter [15].

(e) With (I - P) as given by Corollary 3.3.3(f)

A -I - (I - P)(I - P)§~

Thus using equation (4.1) with v -e we obtain
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e'A ( I'(I - P1 1 ) -l,1)

- (I - (8'(I-FP1 ) - 1, l)e

This result was reported by Rohde [17]. An alternative proof of this

result via the group inverse (I - P)# is given by Meyer [11].

An alternative derivation can also be given by using equation (4.6)

with j - m since with P so partitionedI+ -
(I - P)m , and (cf. proof of Corollary 3.3.3(f)),

[(I - - A(I P -l - - -A(I -

A0'(i - Pll)- 1  

A

where.-- (1 + $'(I - P) e)- . Equation (4.7) now follows from equation

(4.6). This technique was used by Meyer [12] and also by Snell [181. o

If expression (4.2) is used as the basis for a procedure to determine T'

then there is still considerable flexibility in the choice of u' and t. Paige,

Styan and Wachter [151 carried out an error analysis and computational comparison

between a variety of algorithms that included the techniques specified by

equations (4.3) (4.4) and (4.6) together with rank reduction, limits of matrix

powers and least squares procedures. Their study concluded with a recommendation

for the method given by equation (4.3) with u' -fi  'P (j - m for convenience)

using Gaussian elimination with pivoting to solve the equation w'(I - P + eu') - u'.

This procedure gave the fastest computing times and the smallest average
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residual errors.

4.2. Semi-Markov processes

From equation (2.13) we see that, under certain conditions, the limiting

distribution of a semi-Markov process can be expressed in terms of w', the

stationary probability vector of the underlying Harkov chain. Obviously we

can use any of the techniques of Theorem 4.1 and its corollaries to find w'

and then compute v'. However are there any procedures that will give us

some simple structure to the algorithm? The following theorem addresses

itself to these questions.

Theorem 4.2.: Let {(XnT)I be an aperiodic finite Harkov renewal process with

the Markov chain {X n } having an irreducible transition matrix P. Let {P

be the mean holding times in the states with A - diag(ul, P2,'"..,im) and

v Ae. Let v' - (vl, V2, 
o- , vm) be the vector of limiting probabilities for

the minimal semi-Marrov process then for any t 0 0 and u such that u'e # 0

u'[I - P + tu' ]-iA
(4.8) v' .- = 1

u'[I - P + tu']-i

In particular,

(4.9) v' =uI - P + Iu]- .A

Proof: Equation (4.8) follows from equation (2.13) and equation (4.2), with

cancellation from numerator and denominator by u'[I + P + tu' ]-le.

Equation (4.9) now follows by taking advantage of equation (3.13) with

t- 0
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Observe that [I - P - u- is a g-inverse of I - P which reduces to

[I - P + e u' ]-I when the Markov renewal process degenerates to a Markov

chain with = e. Thus equation (4.9) is the analog of equation (4.3) in this

more general context.

Note also that there is a one to one correspondence between v' and w'

so that in any application knowledge of either suffices. It is easily seen

that

,,A v'A -

- r'Ae is equivalent to w' - -
" -e vA e

4.3. Markov chains in continuous time

Since Markov chains in continuous time are special semi-Markov processes

-1-"
we can use the results of the previous section with A - - and i' -Q

Furthermore, instead of expressing our algorithm in terms of P, the transition

matrix of the imbedded jump chain we can give alternative expressions using

Q, the infinitesimal generator of the process. This leads immediately to the

following theorem.

Theorem 4.3.: Let t 0 0 and u be vectors, with u'e 0 0 then the stationary

probability vector v' for the Markov chain in continuous time with imbedded

Jump chain transition matrix P can be expressed by

u'[t - P + u' ]Qd
(4.10) V'P+

u'[I - P + tu]- Qd

In particular,
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(4.11) 1 u[I P P + Q- I 1,]-1

Alternatively, v' can be expressed in terms of the infinitesimal generator

as

U'Q + tu']-I
(4.12) V' M

In particular,

(4.13) V' - u'[Q + eu']- 1 .

Proof: Equations (4.10) and (4.11) follow from equations (4.8) and (4.9)

after substitution for A and V and replacing both t and u by -t and -u

respectively.

Equations (4.12) and (4.13) now follow from equation (4.10) and (4.11)

with I - P - QdlQ and t replaced by -1 t 0 0

An interesting observation is that equations (4.12) and (4.13) can also

be obtained directly by solving the equations v'Q -0 subject to v'e - 1 using

the g-inverse approach to solving systems of linear equations as outlined in

section 4.1 but using the g-inverse of Q as found in section 3.4.

Although we won't restate the equivalent theorems in this section, every

result derived in section 4.1 follows for Markov chains in continuous time but

with I - P replaced by Q and w' replaced by v'. This, of course, is a direct

consequence of the characterization of g-inverses for Q as given by equation

(3.20).

32



5. Mean First Passage Time Matr es

5.1. Markov chains in discrete time

Let M - [Nij] be the mean first passage matrix for a Markov chain with

irreducible transition matrix P and stationary probability vector w'. Let

H - ew'. Then from equation (2.4)

(I- P)M E - Pd,

where, from equation (2.5) Md ( (d)-

Observe that equation (2.4) is of the form AX - C where A - I -P,

X - M and C - E - P(H d)- l . The general procedure for solving this system

of linear equations is given by Corollary 3.1.1 and by taking a general

form for the g-inverse of I - P we are led to the following result.

Theorem 5.1.: If G is any g-inverse of I - P, then

(5.1) M = [GH - E(GH)d + I - G + EGd]D,

where D - ( .1

Proof: By equation (3.4) the general solution to equation (2.4) is given by

(5.2) M = G(E - PD) + (I - G(I - P)}U,

where U is an arbitrary matrix, provided the consistency condition

[I - (I - P)G](E - PD) = 0,

is satisfied. With G taken in the general form as given by equation (3.19),

i.e., for suitable t, u, f and
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G [ I -P + tu'J 1 + ef' + gir',

we have, using equation (3.14) that

t
[I - (I - P)G](E - PD) = -(I - P)gir' lee' -PD]

7r (-t (I - P)g][e' - ir'D]

-0 since 7r'D = e',

showing that equations (2.4) are in fact consistent. Now, using equation

(3.18),

u'
[I - G(I - P)]U =e[-+ f'(I - ],

use -

eh'U eb', say.

Thus equation (5.2) can be written as

(5.3) M - G(E - PD) + eb'.

Observe that the m 2arbitrary elements of U have been reduced to only m,

the elements of b'. These can be determined explicitly due to the restriction

that Md - R)- Suppose b' -(lb .. b)and let B -= gb~

From equation (5.3) forming the matrices of diagonal elements gives

D -(GI) d D - (GP) dD + B,

implying that

(5.4) B [ I -(Gfl)d + (GP) d]D.
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Since eb' - EB and E = ID substitution of equation (5.4) into equation (5.3)

yields

(5.5) M - [G - E(G1I)d - GP + E(GP)d + E]D.

Further simplification of equation (5.5) is possible since we have

shown above that

I - G + GP = eh',

and thus

E(I - G + GP)d = ee'(eh') d  e

Hence

E - EGd + E(GP)d = I - G + GP,

implying that E + E(GP)d - GP = I - G + EGd. Substitution into equation (5.5)

gives the required result, equation (5.1). O

Theorem 5.1 presents a new result. It has the same desirable property

alluded to earlier, following Theorem 4.1, namely that any computer package

that generates g-inverses can be used to determine means of the first

passage time distributions.

Because we have used an arbitrary g-inverse of I - P in developing

Theorem 5.1 we have considerable flexibility in choosing a particular g-inverse.

Firstly the form of the solution for M given by equation (5.1) does not

depend on the choice of f and g.

Corollary 5.1.1.: If G - C0 + ef' + ' where
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Go = [I- P.+ ul-I (t 0, u'eO),

then

(5.6) M - [G011 - E(GOn")d + I - Go + E(GO)d]D,

where D d)

Proof: Let G =G 0 + H where H ef' + gw'. Then

HR, (f'e) + = (f'e)n + R - ef',

and

E(HR)d (f'e)En d + EHd - E(ef')d - (f'e) + EH - ef'.

Consequently HR - E(HR)d = H - EHd and the result follows by substitution

in equation (5.1). 0

The advantage of equation (5.6) is that any computation with a more general

g-inverse is effectively the same as that performed by taking a g-inverse of

the form Go = [I - P + tu']-.

However by placing some additional restrictions on the form of the

g-inverse we can simplify the form of the expression for M.

Corollary 5.1.2.: (a) If G [I - P + eu' ]- + ef' then

(5.7) M - [I - G + EGdID.

(b) If G- [I- P + eu' + ef' + gw' then

(5.8) M- (I - 0 + E(GO)d]D,

where G 0  [1 P + eu'] and D - d)
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Proof: (a) With G as specified

Gil- [I- P + eu']- e7' + ef'ew',

en'
7~ + (f'e)ew', using equation (3.15),

ule ....

B 81 where 8 (1/u'e) + f'e.

Thus E(G)d = BEid = $1 = GH and the result follows from equation (5.1).

(b) With G as specified, part (a) with f - 0 implies that

E(GOH)d = Go and the result follows from equation (5.2). o

Special cases of Corollary 5.1.2 have appeared in the literature. In

particular when fV = 0' and u' = w' equation (5.7) becomes

M = [I - Z + EZd]D,

where Z = [I - P +11] - I , the fundamental matrix of the irreducible Markov

chain, as obtained by Kemeny and Snell [9 ].

Similarly when f' = -w' and u' = w' equation (5.7) becomes

M = [I - T + ETdID,

where T = [I - P -H]-i - R, the group inverse of I - P; as obtained by Meyer [111.

There are some computational considerations that need to be taken into

account. Both Z and T effectively require the prior determination of w'

which of course, requires the use of some generalized inverse of I -
P. Why

not use the same g-inverse in one of the forms (5.1), (5.7) or (5.8)? In the

corollary that follows we make use of some of the g-inverses used in 
establishing

Corollary 4.1.3.
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Corollary 5.1.3.:

(a) If G [I- P + eu'] then

(5.9) M = [I - G + EGd]feu'G)d]- .

(b) If G - [(I - p)]-1 _g ij ] then,

(5.10) M - (I - G + EGdID + (eje' - ee

where D - diag( -,1- ).

(c) If P [P

a -= (I - -e, b 5 '(I - P -1 1 + b'e

then

[ab' - E(ab') + A(I - (I - PI )-1 + E((1 P )-l1-1((eb') a-

(5.11) M[
- [e'(I P11 -1)d- !' (ab ')d] ((eb') d)-

Proof:

(a) Equation (4.3) gives w' - u'G and the result follows from equation (5.8)

by noting that R d - (e!') d - (eu'G)d.

(b) From Corollary 4.1.3 we see that G - [I - P + tjej ]1-I where

= e - (I - P)ej. Furthermore, from equation (4.6),

I - ej 'G = (gjl,gj 2 ,...,gj 3 ) so that the expression for D follows.
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Since t 0 e we use the general expression for M as given by equation
.j

(5.1). First observe, however, that Gle - (I - P + tjej')ej (I -P)e

+ • (I - P)ej eso that Ge - ej and hence that GH - Gei' ej

Consequently,

[GHu- E(GR)]D - [ew -D ,

- ejY'D - ee Jj D,

=ee' - eej

and equation (5.10) follows from equation (5.1).
i.(I - P ll ) - 1

(c) If, in equation (5.1), we take G :
of 00

1
and i ' (b',l), as given by equation (4.7) and we carry out the requisite

substitution, expression (5.11) is obtained. 0

The procedure suggested by equation (5.9) has the advantage of simplicity

but it does involve the inversion of an m x m matrix whereas the procedures

suggested by equations (5.10) and (5.11) require the computation of an (m - 1)

x (m - 1) matrix inverse. The expression given by equation (5.10) has appeared

in literature for the case j - m (Meyer [12]).

5.2. Semi-Markov processes

In section 2.2 we saw that M, the matrix of mean first passage times in

a semi-Markov process satisfies equation (2.10), i.e.,

(I -P)M- E (lE- PD,
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where P~1  II [Ii and D Md.

This is a generalization of the relevant Harkov chain result and can be

solved in an analogous manner.

Theorem 5.2.: If G is any g-inverse of I - P then

(5.12) M -IGP') -1)11 E(GP~1~n))d + I - G + EGd]D,

where X, !' P (1 e, H ew', D - A 1(11 d)-

Proof: First note that premultiplication of equation (2.10) by i'yields

(1)M - ir'D, and further T' P (1)E 9Pe l 1.

Now if we follow through the proof of Theorem 5.1 the consistency

conditions are seen to be satisfied:

t

The general solution is then given by

M-= G(PW'E - PD) + [I - G(I, -)U

-G(PM'E - PD) + eb',

using equation (5.3). Replacing eb' by EB, as in the proof of Theorem 5.1,

and taking diagonal elements of equation (5.13) yields

(51)D W (GP tl) E)d -(GP)d D + B.

Since GPM'E - 1 GP~1 er' D -1GP( 1'T1D substitution of the expression

for B obtained from equation (5.14) into equation (5.13) yields
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MH(1) N GP It-- E(Gp(1)f)d - GP + E(GP)d + E]DA1 1

Further simplification, as in the proof of Theorem 5.1, yields the stated

expression. o

An immediate observation is that if P(l) = P and hence p = e and X " 1,

as is the case for a discrete time Markov chain, equation (5.12) becomes

equation (5.1).

Theorem 5.2 presents a new result. A special case when G - Z [I - P + I]-1

appears in Hunter [8].

As was the case in section 5.1 it is of interest to know whether any

simplification of expression (5.12) occurs when G has some additional structure.

Corollary 5.2.1.: If G - [I - P + ,]-1 + ef' (with u'e 0 0) then

(5.15) M - [I - C + EGd]D.

Proof:

GP(1)I - G - [I - P + pu'I-- , + ef'r' ,

- + fvp]n, using equation (3.17),

= 81, say.

Thence IE(GP(1)) d - GP(1), as in the proof of Corollary 5.1.2. D

An interesting observation is that this same form of g-inverse for I -P,

with f' - 0', appeared in Theorem 4.2 when the limiting distribution of the

semi-Markov process was considered. Further simplication occurs for D in this

case and all properties of interest appear in a simple form.
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Corollary 5.2.2.: Let G - [I - P + lu']-i (with u'e # 0), then

1 " (u'Ge)- n' = Au'G, v' u'G(jU')d$

(5.16) M - [I - G + EGd][eu'G)d]-.

Proof: Since w' - u'G/u'Ge, (equation (4.21)) and u'Gv = 1, (equation (3.17))

the results follow easily. 0

The techniques used in this section can be extended to obtain expressions

for M(r) . I(r) for r > 1. This problem was examined by Hunter [8] and

explicit expressions were obtained for M(2) and M(2) in terms of Z, the

fundamental matrix. Actually the methods used in this aforementioned paper

(2)extend naturally to give the following result for Md . The proof follows

as for Theorem 2.17, Hunter [8] but with Z replaced by G.

Theorem 5.3.: If G is any g-inverse of I - P then

(5.17) M(2) 1 -l [2{((l )GP 1 d _ (Gp(1)H1d _ (p1PG)d + AlGd}D

+ A2 1]D,

where A - W'P(1)- e ,7ri and X2 IP (2),e = 7,(2). 0

Simplification of expression (5.17) can be effected by taking special

forms for G. Firstly we use the form considered in Corollary 5.2.1.

Corollary 5.3.1.: If G - [I - P + Uu']-I + ef' (with u'e # 0) then

(5.18) M = [2{Al d - (lIP( 1)G)d)D + A2I]D.d 1 dd 2

Proof: From the proof of Corollary 5.2.1, GPM(1H - 81R so that

P(1)Gp(1)n " -ew'P(1)e7w ' -OX R. Consequently the first two terms of
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expression (5.17) cancel. 0

Further simplification can be effected by taking a specific choice of u.

Corollary 5.3.2.: If G - - P + pp (1)1-1 then

(2) (A 2- 2)

(5.19) M [2GdD + A-) I]D.

Proof: With G so chosen observe that from equation (3.13)

lip (1)G - e'P 1) [I - P + I,1)'P ]- 11.I-l I[

and equation (5.19) follows equation (5.18) upon noting HdD i. O

The g-inverse of I - P used in Corollary 5.3.2 has not appeared in the

literature before. It appears to have the interpretation as the "fundamental

matrix of Markov renewal process" since it is a generalization of Kemeny and

Snell's Z matrix. When the process degenerates to a Markov chain p(l) P p,

p e and thus pwp(l) . ew' and G becomes Z. Also in this case

~(2 ) = 2 e, X = X -1 and equation (5.19) becomes
1 1

M(2) = [2ZdD - I]D,
Md [2 d

as obtained for Markov chains by Kemeny and Snell [9].

* 5.3. Markov chains in continuous time

In this case =O -e and the g-inverse of I - P used in Corollary

5.2.2 becomes 1- P - -eul]l. If we replace u' by -u' we can take a

g-inverse of I - P as

G I -P + -1 eu' 1-IQ + eu-Qd,
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using equation (2.15). However [Q + eu'] 1 is a g-inverse of the

infinitesimal generator Q which we used in Theorem 4.3 to obtain simple

results for v'. In this case we can express H in terms of properties of

Q.

Theorem 5.4.: If H - [Q + eu'] 1 (with uWe yI 0) then

(5.20) H - [H - EHd - dl][(eu'H d 1

and VI -U'H, A1  (v'QS -1 -A AlyQd*

Proof: From Corollary 5.5.1, since G - HQd

H [ I - HQd + EHdAd]D,

(5.21)

Q71 - H + EHdIQdD.

Now, from equation (4.13), v' = u'H. This then implies that, since

A = -Q-1

Also, since U, A.,

v'A71P V9 e 1

I Q d S' - -' d - ! ' d

Consequently, ii' -AvQ. Furthermore

-A(OV')dQd A -A(eu'H)d%,
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and thus

(5.22) QdD lQd(nd)-i =-(eu'H)d

and equation (5.20) follows from equations (5.21) and (5.22). 0

6. Moments of the Occupation Time Random Variables

6.1. Markov chains in discrete time

In section 2.1 we saw that the behavior of the expectations of the

random variables M(n and N(n was intimately connected with sums of power

of the transition matrix. The following theorem shows that we can use

g-inverses to obtain expressions for such sums.

Theorem 6.1.: If G is any g-inverse of I - P where P is an irreducible

transition matrix, then

n-l n + (I - H)G(I P ),

(6.1) Er p =
r0 nil + (I - P)G(I - U).

n-l
Proof: Let A E £pr thenn r0

(6.2) (I - P)An = I - en,

and

(6.3) A (I - P) - I - P'.n

Equations (6.2) and (6.3) are in a suitable form for applying Corollaries

3.1.1 and 3.1.2, respectively. Both equations are in fact consistent and the

arbitrary constant matrix in each solution can be eliminated using the
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observation that the A are constrained by the relationshipsn

(6.4) A n H -A = nf.

With G - [I - P + tu']'- + ef' + gw' it is easily seen, as in the proof

of Theorem 5.1, that

t
(6.5) I- (I- P)G = - (I- P)g]' aw',

WIt

and

U
t

(6.6) I - G(I - P) = - f'(I - P)] e8'.
u'e

We shall consider only equation (6.2). The procedure follows analogously

for equation (6.3). The consistency condition is verified by using

equation (6.5) while equation (6.6) shows that the general solution is

given by

A -G(I - Pn) +eB'U
n -*n

(6.7)

- G(I - pn) + eu n' say.

Further, from equation (6.5)

(6.8) nfl - fG(I - Pn) + eu ', (since He - e).

Elimination of eu n' between equations (6.7) and (6.8) leads to the first

form of equation (6.1) for A .  
0

If we restrict attention to regular Markov chains then lim p(n)

for all ij - 1,2,'",m and thus, in terms of matrices lim pn _ H. With

this observation we obtain the following information concerning the behavior
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n-i r
of E P for large n.

r=O

Corollary 6.1.1.: If G is any g-inverse of I - P where P is the transition

matrix of a regular Markov chain then

n-i r
(6.9) EP - nH + (I - )G(I - H) + o()E. 0

r-0

Corollary 6.1.2.: If G - [I - P + tu'l =1 + ef' + gw' (t # 0 and u'e 0 0)

then if P is the transition matrix of a regular Markov chain

n-I r1
(6.10) ElP - nR + (I - n)(I - P + tu')-(I - R) + o(l)E.

r-0

Proof: Equation (6.10) follows upon the required substitution and observing

that (I - R)e - 0 and w'(I - R) - 0'. 0

In terms of the expectations of the random variables M(n) a (n)
iJ ijth

above corollaries, in conjunction with equation (2.7), give immediately:

Theorem 6.2.: For regular Markov chains

(6.11) (n) "  (n + 1)R + (I - U)G(I - n) + o(l)E,
ii

and

(6.12) (EN) (n + 1)1- I + (I - f)G(I - H) + o(1)E. 0

Although the general expression of Theorem 6.2 are new, if G is replaced

by Z, the fundamental matrix, we obtain the results of Kemeny and Snell (9]

while if G is replaced by A , the group inverse of I - P, we obtain the results

of Meyer 11l. In these special cases we get simpler forms. In particular we

have the following corollary.
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Corollary 6.2.1.: For a regular Markov chain

nff + Z + o(l)E,

(6.13) [EM(j -

ii
(n + 1)11 + A# + o(l)E.

Proof: Simplification of equation (6.11) gives the required forms after

observing that (I - R)Z(I - R) - Z - R and (I - )A #(I -f) - A#. 0

6.2. Markov renewal processes

In section 2.2 an asymptotic form for the Markov renewal kernel, M(t)

was given by equation (2.12) i.e.,

M(t) - tE(Md)-l +-! E[(Md)-l]2.(2) - M(Md)-l + o(l)E.

By utilizing the results of Theorems 5.2 and 5.3 and their corollaries

we are able to obtain expression for M(t) in terms of g-inverses of I - P,

where P is the transition matrix of the imbedded irreducible Markov chain.

Theorem 6.3.: If G is any g-inverse of I - P then

(6.14) M(t) A2  PIiP(1)GI - -L PMl) - I + o()E,A1  A1
2  A1A 1I

where A1 = 7P(
1)e A 2  1P(2)'-

Proof: As for the proof of Theorem 3.3 of Hunter [8 ] but with Z replaced

by G. 0

Equation (6.14) is identical in form to that obtained earlier with the

special g-inverse, Z, the fundamental matrix of the imbedded Markov chain.

However the generality of Theorem 6.13 enables us to use special forms of G

to obtain simpler structural results.
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Corollary 6.3.1.: (a) If G =[I - P + Vu'1-1 (with u'e , 0) then

(6.15) M(t) = -1 H + " H + [I - -L nP( 1 )]G - I + o(l)E.

(b) If G [I -P + t'P( 1)] 1 (with t #0) then

t Al2 I (1)]

(6.16) M(t) i + + G[I - A - I + o(l)E.

(c) If G= [I -P + ,P(1)]-i then

= t (A2 -1)fl
(6.17) M(t) 1  1  + G - I + 0 (1)E.

AX I

Proof: If G - [I - P + tu'] - 1 then

if t = = P(1)e, equation (3.17) implies GP 1 )e - e

while if u' =  p()I equation (3.13) implies w'P (1)G =

With the appropriate substitution for t and U in equation (6.14) the

stated results are obtained following simplification. 0

The expressions given in Theorem 6.3 and its corollaries are new.

Computationally equation (6.14) offers much more flexibility than previously

thought possible whereas equation (6.17) offers a structurally simple result.

Observe that when the process degenerates to a Markov chain A1 - X2 - 1,

P(1 - e r' and equation (6.17) reduces immediately to the form
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(6.18) M(n) -[= ) = nIl + Z - I + o(l)E

which follows, alternatively, from equations (2;7) and (6.13).

We have not examined expressions for the higher moments of Markov

renewal counting processes. A discussion concerning the computation of

variances is given in Hunter [81.

6.3. Markov chains in continuous time

In this case the results of Theorem 6.3 and its corollary apply with

.() --1 an (2) . -1)2 =-1Qe-1 (v -1
p) d _dP and P 2 (Q d )P implying that A1 = - e -(v'Qd-
and X2  27r'(Qdl)2 ffi-2-l'Qd

Consequently we can derive expressions for M(t) involving the

stationary probability vector v' and generalized inverses of Q for

irreducible Markov chains in continuous time.

Theorem 6.4.: If H is any g-inverse of Q then

(6.19) M(t) = -tLQd + 2TLQd + [I - LP]H[I - L]Qd - I + o(l)E,

where L = ev' and T = v'l

Proof: If H is any g-inverse of Q then, using equation (3.20) and the

observations that I - P - Q-1Q_ and w' = -X1l'Qd, it is easily seen that

H - d where G is a g-inverse of I - P.

With L - ev' it is easily seen that n - -XlLQd, PL - L and thus

equation (6.19) follows from equation (6.14). 0

Analogous results for the special cases of Corollary 6.3.1 can be

examined by taking H as (Q + tv'P), (Q + eu') and (Q + LP)- .
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7. Concluding remarks

In a paper examining the role of group generalized inverses in the

theory of finite Markov chains, Meyer [11] stated that the "correct"

generalized inverse to use is the group generalized inverse. He also

claimed that the Moore-Penrose inverse or any other g-inverse that satisfies

a subset of the Penrose conditions of Definition 3.2 are the wrong types since

they are "forced" into the theory because of their ability to produce

solutions of consistent systems of linear equations. However, as we have

exposed in this paper, by taking the class of all g-inverses as our starting

point we are able to present a unified approach to a large class of different

but related problems for a wide variety of Markovian and semi-4arkovian models.

If any one g-inverse stands out it is the matrix [I - P + Vv'P( ) ]-1 as

presented for the first time in Corollary 5.3.2 and later in Corollary 6.3.1(c).

As we saw, this matrix is a generalization for semi-Markovian processes of the

fqndamental matrix of irreducible Markov chains as first presented by Kemeny and

Snell [9].

Of course, the group inverse has other advantages when one is interested in

classifying states of the Markov chains but Campbell and Meyer's claim [3] that

some types of g-inverses lead to cumbersome expressions which do little to

enhance or unify the theory and provide no practical or compuational advantage

is disputed. The observation that all known explicit methods for finding

stationary distributions can be put in a generalized inverse framework together

with the result that any g-inverse can be used in examining the problems

presented in this paper is a compelling reason that g-inverses have an important

role to play with a wide variety of computer subroutines available for g-inverses,
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many included in statistical packages, the applied probabilist now has a

large arsenal of techniques available for his use in tackling some of the

computational aspects of this study.
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